PHYSICAL REVIEW B 79, 012301 (2009)

Isotope effects on the lattice parameter of cubic SiC
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Path-integral molecular-dynamics simulations in the isothermal-isobaric (NPT) ensemble have been carried
out to study the dependence of the lattice parameter of 3C-SiC upon isotope mass. This computational method
allows a quantitative and nonperturbative study of such anharmonic effect. Atomic nuclei were treated as
quantum particles interacting via a tight-binding-type potential. At 300 K, the difference Aa between lattice
parameters of 3C-SiC crystals with 12C and C amounts to 2.1 X 10™* A. The effect due to Si isotopes is
smaller and amounts to 3.5X 107> A when replacing 28gi by 2Si. Results of the path-integral molecular-
dynamics simulations are interpreted in terms of a quasiharmonic approximation for the lattice vibrations.
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It is well known that the lattice parameters of two chemi-
cally identical crystals with different isotopic compositions
are not equal, lighter isotopes giving rise to larger lattice
parameters. This is caused by a combination of two factors:
the dependence of atomic vibrational amplitudes upon
atomic mass and the anharmonicity of the vibrations. The
isotope effect on the lattice parameter is most important at
low temperatures, due to the change in zero-point vibrational
amplitude with atomic mass, and disappears in the high-
temperature (classical) limit at 7>®, (0®,—Debye tem-
perature), where vibrational amplitudes are independent of
the mass. In recent years, it has become feasible to measure
the isotopic effect in lattice parameters of crystals with high
precision.! Most of the work has been performed on elemen-
tal crystals, although binary and multinary materials offer the
attractive possibility of isotopic substitution on different
atoms.? Of these materials, SiC with three stable isotopes of
Si and two of C, plus about 70 different polytypes, is a para-
gon. Here, however, we confine ourselves to the simplest
polytype: zinc-blende-like 3C-SiC.

SiC has been suggested for a number of applications ex-
ploiting many of its superlative properties, close to those of
diamond.*>* Some of these applications take advantage of its
hardness, large thermal conductivity, and low thermal expan-
sion. Isotopically modified SiC may find applications ex-
ploiting the higher thermal conductivity® and the dependence
of its hardness on isotopic composition.®

Anharmonic effects in the vibrational properties of
3C-SiC have been studied earlier in detail, e.g., the pressure
and temperature dependence of phonon frequencies’® and
lifetimes.”!® The thermal expansion of cubic SiC (another
anharmonic effect) has been studied in detail both
experimentally!' and theoretically,'>!3 the latter using a
quasiharmonic approximation (QHA) for the lattice vibra-
tions.

Isotopic effects on the lattice parameters of crystals have
been usually calculated by employing the QHA and pertur-
bative methods based on ab initio techniques.>'*!> An alter-
native to perturbational approaches in solids is the combina-
tion of the path-integral formulation (to deal with the
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quantum nature of the nuclei) with electronic structure meth-
ods. The path-integral approach to statistical mechanics al-
lows one to study finite-temperature properties of quantum
many-body problems in a nonperturbative scheme, even in
the presence of large anharmonicities.'® An advantage of its
combination with electronic structure methods is that both
electrons and atomic nuclei are treated quantum mechani-
cally in the framework of the Born-Oppenheimer
approximation.'7-1?

The path-integral molecular-dynamics (PIMD) method is
based on an isomorphism between the quantum system under
consideration and a classical one, obtained by replacing each
quantum particle by a cyclic chain of classical particles, con-
nected by harmonic springs.'®?2! When calculating proper-
ties of crystals with isotopically mixed composition, it is
usually assumed that each atomic nuclei in the solid has a
mass equal to the average mass. This kind of virtual-crystal
approximation has been used in density-functional calcula-
tions, as well as in atomistic simulations based on path
integrals.>?!=2* In fact, in earlier path-integral simulations of
diamond it was found that the results obtained by using this
approximation are indistinguishable from those derived from
simulations in which actual isotopic mixtures were
considered.?*

Here we extend earlier path-integral calculations of the
lattice parameter of group-IV solids?"-?3?* (diamond, Si, and
Ge) to a IV-IV compound such as 3C-SiC. The electronic
structure has been treated with an efficient tight-binding
Hamiltonian based on density-functional calculations.?>2¢
Simulations were performed on a 2 X2 X2 supercell of the
3C-SiC face-centered-cubic cell with periodic boundary con-
ditions, including 64 atoms. For a given temperature and
isotopic composition, a typical run consisted of 2X 10*
PIMD steps for system equilibration, followed by 4 X 10°
steps for the calculation of ensemble-average properties. De-
tails on the actual implementation of the PIMD method to
study structural and electronic properties of SiC were given
elsewhere.?®

First of all, we quantify the influence of quantum effects
on the lattice parameter of cubic SiC. With this purpose we
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FIG. 1. Temperature dependence of the lattice parameter of
3C-SiC, as obtained from (a) PIMD simulations (squares), (b) simu-
lations performed by setting the Si nuclei as classical particles
(circles), (c) simulations carried out by considering classical C nu-
clei (triangles), and (d) all nuclei are assumed to be classical (dia-
monds). Lines represent empirical fits. The statistical error of the
simulation results is less than the symbol size.

have performed simulations in which the atomic nuclei of
either C or Si (or both) were considered as classical particles.
We note that in the formalism used here, the classical limit
for a given atomic nucleus is obtained by taking its mass as
M — oo (in fact, we took masses in the order of 10° amu).

In Fig. 1 we present the results of our molecular-dynamics
simulations for the various cases considered. First, we com-
pare the results of the full PIMD simulations (quantum
atomic nuclei, open squares) with those of classical simula-
tions (diamonds). The zero-point motion induces an increase
in the lattice parameter of 0.011 A, which means a relative
change of 2.5 X 1073. Second, we are interested in the lattice
parameter obtained when nuclei of one of the elements (Si or
C) are considered as classical and the other as quantum par-
ticles. Thus, triangles represent results for quantum Si and
classical C, whereas circles indicate data for quantum C and
classical Si. By comparing these results with those found in
the full PIMD simulations, we find for 7— 0O that the lattice
parameter a increases by 3.9 X 1072 and 6.8 X 10 A due to
having considered Si or C as quantum particles, respectively
(assuming in each case that atomic nuclei of the other ele-
ment are quantum particles). We note that these results are
similar to those presented earlier in Ref. 26, but here the
simulations extended over run ten times longer in order to
improve the accuracy in the lattice parameter, and the present
error bars are smaller by a factor of ~3.

Results presented until now were obtained for SiC crys-
tals with natural isotopic composition. We now turn to simu-
lations of SiC crystals, in which one of the elements is taken
to be isotopically pure. Thus, we carried out PIMD simula-
tions of ™Si'?C and ™'Si'3C (where the superscript “nat”
refers to the mass of the natural isotopic composition) at
several temperatures. Results for the difference Aa
between lattice parameters of both kinds of crystals are
shown in Fig. 2 (squares). At room temperature, we find
Aa=2.1X10"* A, which translates into a relative change
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FIG. 2. Temperature dependence of the isotope effect on the
lattice parameter of 3C-SiC. Squares represent the difference be-
tween lattice parameter of g 12C and "Si'3C, whereas circles
indicate the difference Aa between **Si"™C and *Si™C. Filled
symbols indicate the low-temperature values derived from Eq. (5).
Lines represent fits of the simulation results to Eq. (1).

Aa/a=4.8X107. Something similar has been done for
25i"C and »’Si"™C crystals, and the difference Aa yielded
by our simulations is much lower: at 300 K we found
Aa=3.5x10" A or Aa/a=8X107°. The temperature de-
pendence of Aa can be fitted to a function with the shape of
the mass derivative of a Bose-Einstein function, namely,

2 X
Aa=C[1+ (1— i )] (1)
e -1 e -1

where x=T,/T and C and T, are fit parameters. Dashed lines
in Fig. 2 represent this function with 7,,=1200 (upper curve)
and 600 K (lower curve). Equation (1) is basically equivalent
to Eq. (3) of Ref. 26 except that the adjustable parameter b
has been replaced by well-defined physical variables more
convenient for the subsequent treatment. The minor devia-
tions of the PIMD points from the fitted curves are not sur-
prising since we have used a single Einstein-oscillator fit.
They could be decreased by using two oscillators.?’

The results of our PIMD simulations can be further ana-
lyzed in terms of a QHA for the lattice vibrations. In such an
approximation, the lattice parameter a(7) for a given isotopic
composition at temperature 7" can be derived by minimizing
the Helmholtz free energy with respect to the crystal
volume.??? One finds

L Y,(@E,(q.7), ()

a(T)=a,+
@ 3Ba§,mq

where

ﬁwn(q)).

2kyT ®)

1
En(q’T) = Eﬁwn(q)COth<
Here, w,(q) are the frequencies of the nth mode in the crys-
tal, B is the bulk modulus, a.. is the zero-temperature lattice
parameter in the limit of infinite atomic mass (classical
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limit), and 7y,(q)=—3d1In w,(q)/dIn V is the Griineisen pa-
rameter of mode n and q. Then, at 7=0 the difference
a(0)—a., is given by

1
e > hw, (@) y,(q). (4)

oo n,q

a(0) —a,=

Let us consider now for simplicity two isotopically pure
monatomic crystals with a mass difference AM. The differ-
ence between the corresponding lattice parameters, Aa, can
be related to the zero-point renormalization, a,,(0)-a.,, for
the natural crystal. This can be achieved through a first-order
expansion for the lattice parameter as a function of the mass
M and taking into account that the frequencies w,(q) scale as
1/YM. One finds for the change in lattice parameter at
=0,

1 AM
Aa=- E[anat(o) - aoc] Mnat . (5)

This means that the low-temperature changes in a due to
isotopic mass can be obtained from the zero-point renormal-
ization of the lattice parameter in the natural crystal.

For binary compounds such as SiC, one can use a formula
similar to Eq. (5) to obtain the separate contributions of each
kind of atoms (i.e., Si or C). To first order, the contributions
of both types of atoms will be additive. Then, from the dif-
ference a,,(0)—a.. discussed above and presented in Fig. 1,
we obtain in the low-temperature limit, using Eq. (5),
Aa=2.8x10"* A when replacing '"C by C and
Aa=7.0X107° A for substitution of **Si by *Si. These are
the values shown in Fig. 2 as filled squares at 7=0.

We note that the virtual-crystal approximation has been
employed in our simulations, i.e., for crystals with the natu-
ral isotopic composition of Si or C we have assumed that the
atoms have the average mass. In this respect it is worthwhile
considering the validity of assuming an effective mass Mg
for all the atoms in a given crystal to describe changes in the
lattice parameter. In view of Eq. (4), one has??

a(0) — a.,

(29

#
~ B—Vc<wn(q)><7n(q)>, (6)

where V, is the volume of the primitive cell and () indi-
cates an average over all branches of the Brillouin zone.
Now we may assume a dependence of the average frequency
on effective mass as

(w,(@)) ~ M, (7)
which, in fact, is expected when one considers M as
1 1/ 1 1
— = —(— + —) . (8)
My 2\Mc Mg

To check this point we have carried out PIMD simulations
for SiC crystals with various effective masses for both Si and
C. The results are displayed in Fig. 3 as open symbols. For
comparison with the result derived for M. given by Eq. (8)
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FIG. 3. Lattice parameter of 3C-SiC as a function of M in a
virtual-crystal approximation, in which all atoms in the simulation
cell (Si and C) are assumed to have the same effective mass. Open
squares indicate results of PIMD simulations in this approximation.
The dashed line is a fit to Eq. (9). An arrow indicates the lattice
parameter derived from PIMD simulations with C and Si atoms
having the mean isotopic masses of natural material.

(~16.8 amu), we also show those obtained by assuming an
effective mass given either by the average (Mc+Mg;)/2 or
by the mass of Si or C. All these results can be fitted well to
the expression

a=b+——, 9)
M o

where b and c are fit parameters. Such an expression can be
expected from Eq. (4) when one considers an effective mass
for both types of atoms at temperatures T<®, (for SiC,
®,~ 1100 K). The actual lattice parameter of SiC yielded
by the simulations above is indicated in Fig. 3 by an arrow. It
coincides within error bars with that derived assuming
M =16.8 amu, as given in Eq. (8). Note that taking the
effective mass as the average of the masses (at about 20
amu) yields a lattice parameter clearly lower than the actual
one obtained using the separate masses of C and Si.

The agreement between the result for M ;=16.8 amu and
the real crystal can be interpreted in terms of perturbation
theory as follows. Looking at Eq. (4), changes in the lattice
parameter are mainly due to TO phonons, as can be derived
from Fig. 9 in Ref. 13 for the appropriate values of 7, and
Fig. 2 for the density of phonon states. The TO band in SiC
is rather symmetric,' and according to second-order pertur-
bation theory,?>?® mass fluctuations cause an increase in the
high frequencies and a reduction in the low ones by a similar
amount. All together the effect in the lattice parameter is
expected to be negligible, as observed in the results of the
simulations. If some effect appears due to mass fluctuations,
it has to be of third or higher order and should be less than
the statistical uncertainty of our results. This gives further
support to the virtual-crystal approximation for calculating
lattice parameters of this kind of semiconductors.
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In summary, we have calculated the isotope effect on the
lattice parameter of cubic SiC by PIMD simulations. This
procedure gives a quantitative estimation of such effect,
which amounts to Aa/a=4.8 X 107> for replacement of 12C
by *C and to Aa/a=8X107° for substitution of 2’Si for
2881, These results have been interpreted in terms of a quasi-
harmonic approach for the lattice vibrations. The virtual-
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crystal approximation is found to be valid in all cases con-
sidered here. Second order perturbation theory, as implied by
Eq. (5), has also been shown to be valid.
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